Differential vesicular sorting of AMPA and GABAA receptors.
نویسندگان
چکیده
In mature neurons AMPA receptors cluster at excitatory synapses primarily on dendritic spines, whereas GABAA receptors cluster at inhibitory synapses mainly on the soma and dendritic shafts. The molecular mechanisms underlying the precise sorting of these receptors remain unclear. By directly studying the constitutive exocytic vesicles of AMPA and GABAA receptors in vitro and in vivo, we demonstrate that they are initially sorted into different vesicles in the Golgi apparatus and inserted into distinct domains of the plasma membrane. These insertions are dependent on distinct Rab GTPases and SNARE complexes. The insertion of AMPA receptors requires SNAP25-syntaxin1A/B-VAMP2 complexes, whereas insertion of GABAA receptors relies on SNAP23-syntaxin1A/B-VAMP2 complexes. These SNARE complexes affect surface targeting of AMPA or GABAA receptors and synaptic transmission. Our studies reveal vesicular sorting mechanisms controlling the constitutive exocytosis of AMPA and GABAA receptors, which are critical for the regulation of excitatory and inhibitory responses in neurons.
منابع مشابه
AMPA, NMDA and GABAA receptor mediated network burst dynamics in cortical cultures in vitro
In this work we study the excitatory AMPA, and NMDA, and inhibitory GABAA receptor mediated dynamical changes in neuronal networks of neonatal rat cortex in vitro. Extracellular network-wide activity was recorded with 59 planar electrodes simultaneously under different pharmacological conditions. We analyzed the changes of overall network activity and network-wide burst frequency between baseli...
متن کاملSubunit Rules Governing the Sorting of Internalized AMPA Receptors in Hippocampal Neurons
Removal of synaptic AMPA receptors is important for synaptic depression. Here, we characterize the roles of individual subunits in the inducible redistribution of AMPA receptors from the cell surface to intracellular compartments in cultured hippocampal neurons. The intracellular accumulation of GluR2 and GluR3 but not GluR1 is enhanced by AMPA, NMDA, or synaptic activity. After AMPA-induced in...
متن کاملAccumulation of AMPA Receptors in Autophagosomes in Neuronal Axons Lacking Adaptor Protein AP-4
AP-4 is a member of the adaptor protein complexes, which control vesicular trafficking of membrane proteins. Although AP-4 has been suggested to contribute to basolateral sorting in epithelial cells, its function in neurons is unknown. Here, we show that disruption of the gene encoding the beta subunit of AP-4 resulted in increased accumulation of axonal autophagosomes, which contained AMPA rec...
متن کاملGABAA, NMDA and AMPA receptors: a developmentally regulated 'ménage à trois'.
The main ionotropic receptors (GABAA, NMDA and AMPA) display a sequential participation in neuronal excitation in the neonatal hippocampus. GABA, the principal inhibitory transmitter in the adult CNS, acts as an excitatory transmitter in early postnatal stage. Glutamatergic synaptic transmission is first purely NMDA-receptor based and lacks functional AMPA receptors. Therefore, initially glutam...
متن کاملProlonged reciprocal signaling via NMDA and GABA receptors at a retinal ribbon synapse.
AMPA and GABAA receptors mediate most of the fast signaling in the CNS. However, the retina must, in addition, also convey slow and sustained signals. Given that AMPA and GABAA receptors desensitize quickly in the continuous presence of agonist, how are sustained excitatory and inhibitory signals transmitted reliably across retinal synapses? Reciprocal synapses between bipolar and amacrine cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 7 شماره
صفحات -
تاریخ انتشار 2016